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Abstract
Bus transport is one of the most widely
used means of transport around Europe.
In this thesis the focus is on understand-
ing the factors influencing pricing poli-
cies of long distance bus routes through
exploratory analysis and use of machine
learning techniques. To achieve this we
have collected data from the two bus ser-
vice providers and compared them against
each other. Our results show the relation-
ship between price and related features is
non-linear and the major influential fac-
tors for both providers are hours to depar-
ture, distance and time traveled by the
bus and the free capacity.

Keywords: pricing analysis, bus
transportation, machine learning

Supervisor: Ing. Jan Mrkos
Praha 2, Karlovo náměstí 13, E-325

Abstrakt
Autobusová doprava je jeden z nejrozší-
řěnějších způsobů osobní dopravy v Ev-
ropě. V této práci se za použití technik
strojového učení zaměřujeme na pocho-
pení vlivů ovlivňujících dynamickou ce-
notvorbu na dálkových autobusových tra-
sách. Za tímto účelem jsme sebírali data
o cenách od dvou operátorů a porovnali
je navzájem. Naše výsledky ukazují, že
vztah mezi cenou a dalšími příznaky je
nelineární. Hlavními faktory ovlivňujícími
cenu u obou dopravců se ukázaly být pří-
znaky doba do odjezdu, délka cesty a volná
kapacita autobusu.

Klíčová slova: analýza cenotvorby,
autobusová doprava, strojové učení

Překlad názvu: Cenová politika a data:
dálkové autobusové linky
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Chapter 1

Introduction

The aim of this thesis is to use machine learning techniques to analyse and
understand the pricing strategies used by two of the leading bus travel agencies
around Europe namely Student Agency and FlixBus.

Pricing of services and products is a very important factor for any business
as it directly relates to its profitability. We seek to explore how two of the
leading bus agencies across Europe are pricing their services, what are the
major factors contributing towards it and how does it effect there overall sales.
We would look to understand comprehensively, pricing mechanisms being
employed by the bus agencies as to whether they are using static pricing i.e.
the price of the service remains constant despite the change in demand or
whether the more conventional and likely scenario of dynamic pricing i.e. the
price of the service is changing with the change in demand is being employed
by them. It could also be the case that the pricing methodology could turn
out be a mix of both of the strategies mentioned previously and this is what
we will discover through the course of the thesis.

Buses are one of the most widely used modes of transport both within
and between the European countries. One of the main motivations behind
the work is the opportunity to add value towards understanding the pricing
dynamics as well as the passenger demand patterns. This could potentially
help companies currently in the field to understand how their potential
competitors are pricing their services and how their own weighs up to the
competition. This work could also act as potential market research to new
companies looking to enter the scene. Another group that could possibly
benefit are the customers, through our prediction models we can suggest to
them optimum ticket purchase dates as well as potential availability of seats
in the bus for routes and dates they would like to travel.

Another motivational factor is the opportunity to contribute towards related
literature on the subject matter. For example in [8], the authors’ objectives
are similar to ours. We can expand on their work further by presenting a
comparative analysis of two bus agencies along with the application of some
of the current state of the art machine learning techniques to enhance the
analysis and bring a new contribution in the area.

As to what follows in the sections beyond the introduction, they can
be divided into three parts - the first part of the thesis is dedicated to

1



1. Introduction .....................................
presenting the overall task at hand, the motivation for doing it and the
review of associated literature around the topic. The concluding sections
introduce the theoretical background to the machine learning techniques
which will be employed along with their evaluation metrics. The second part
is centered primarily around introducing the data at hand. They describe
data collection methodology, pre-processing and feature engineering applied
and the comparative exploratory analysis for the two bus agencies. The third
part is focused on training, testing and evaluation of our machine learning
models followed by the their interpretation and discussion of results.

2



Chapter 2

Objectives of the thesis

The main focus of this thesis is to develop an understanding of the pricing
strategies the used by the bus service providers. Our plan to achieve this
can be divided into two parts. First part involves exploratory analysis of
the datasets where we will try to understand the relationship between both
the price of a ticket and free capacity of the bus with respect to all other
features in the datasets. While the second part would revolve around training
machine learning models on the datasets.

If we are able to train a good model(s) which are able to predict the price
and the free capacity well, it would further allow us to drill down and see
both on local and as well as a global level which features are exerting major
influence over the price and free capacity of buses. What makes our model to
be considered good will be decided based on the ability of model to generalize
on the samples of the data it has not seen during training (referred to as
testing set in the sections to come) by calculating evaluation metrics such as
RMSE, MAE and Adjusted R-Squared .

3
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Chapter 3

Machine Learning techniques

In this section we will be reviewing the techniques used in some of the related
literature. We will compare their use-cases and data requirements to our
use-case. Furthermore, we will present the theoretical background to the
machine learning techniques which we think can work for our use-case based
on the literature review and the nature of our datasets.

3.1 A quick review of methods used in existing
literature

In this section we will shortly review some of the methods used in the some
related literature and if they could be used for our case. While in essence the
focus is same in [4] i.e. to forecast the demand but in our case the problem is
much more complicated due to presence of more number of features along
with a mix of numerical and categorical feature types with multiple levels.
Moreoever, the datasets used in this thesis are very large (both datasets are
having approximately 200k rows each).

Similarly in [12] and [8] much simpler machine learning techniques are being
used and given the scale of our datasets combined with recent advancements
in machine learning it does not make much sense to replicate them for our
use case.

After a review of the existing work we observed that much of it has been
carried out using old techniques and with the vast advancement in the field
of machine learning plus considering the size of our datasets which is quite
large it would make more sense to use advanced machine learning techniques
such as ensembling.

3.2 Ensembling

Ensembling is a class of machine learning techniques based upon the idea
of using aggregated output from multiple weaker models to give rise to a
stronger model.

Before explaining ensembling further, it is important to understand a
classical conundrum in statistics and machine learning which is the bias-
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3. Machine Learning techniques..............................
variance trade-off. Bias can be defined as the difference between the true
value of a predicted outcome and the average predicted value by a model.
High bias can arise due to the model giving erroneously higher importance to
certain features in the dataset which in turn would result in a poorly trained
model which performs badly both on the training dataset and testing dataset.

High bias is also commonly referred to as underfitting of a model to the
data. Variance on the other hand refers to the ability of a model to fit to the
spread of the data it is seeing during training, if this goes on uncontrolled then
the model is said to be overfitting to the data and is not able to generalize
well on the data it has not seen during training phase. So consequently the
desired state of a machine learning model would be to have low bias and low
variance. This motivates the needs for a trade-off between bias and variance
where we want to give enough freedom to the model to explore underlying
complexity of the data (in order to reduce bias) while also checking that too
much freedom could lead to high variance.

Figure 3.1: Bias-variance trade-off [16]

In ensembling, the bias-variance trade-off is catered to by combining multi-
ple so called weak learners (low performance models) who are either having
low bias and high variance or high bias but low variance. Based on how
these weak learners are combined several different methods are used which
are further described below:..1. Bootstrap Aggregating (Bagging) [1]: It combines the approaches of

bootstrapping and aggregating. Bootstrapping is the method of gen-
erating new datasets equal to the size of the original dataset but with
replacements. Any given bootstrapped dataset has at most only 63.2 per
cent [9, Chapter 8] of unique samples. In bagging the overall focus is to
have low bias, high variance weaker models which are balanced out by
being combined together to make one stronger model.

The bagging algorithm is given below [6]

.Generate bootstrapped datasets.

6



..................................... 3.2. Ensembling

. Train a model on each of the bootstrapped dataset.. Average the models getting the bagging model..2. Boosting: Boosting based ensembling approaches lay emphasis on se-
quentially improving weak learners having low variance and high bias
by learning from the mistakes of their predecessors. As we continue the
process the high bias is eventually balanced out by improving on the
mistakes of the previous learners.

3.2.1 Decision Trees

In order to create an ensemble of models there are no particular restrictions
on the type of model that can be considered as a base model (weak learner),
it can be a neural network or a decision tree or anything else for that matter.
But in the scope of this thesis we are going to use decision trees as base models
for implementing both bagging and boosting approaches. Thereby, in this
section we will introduce the concept of a decision tree and further sections
would explain how they can be used as base models to create ensemble models.

A decision tree also referred to as CART (Classification and Regression
Trees) [3] can be understood simply as a structured hierarchical approach to
reach a certain output given a particular set of inputs/attributes. A simple
decision tree is shown in Figure 3.2, here we can observe a decision tree trained
on the titanic datatset and we are predicting whether a passenger survived
or not. We start process by checking the first node and depending upon the
binary outcomes we traverse the tree until a terminal node is reached and
that is our final prediction.

Figure 3.2: An example of a decision tree [14]

Decision tree learning is the process of selecting features and on those
features we further select splitting points. The selection process is greedy and
the aim in case of regression is to minimize the loss function (sum of squared
error).

7



3. Machine Learning techniques..............................

lossfunction =
N

∑

i=1

(yi − y′

i)
2

The splitting of nodes is a recursive binary process which can go on even
uncontrolled and would typically result in overfitting. One of the most
commonly used stopping criterion is to assign a minimum number of training
samples that can be used for each leaf nodes.

A single decision tree can often result in overfitting the training data. In
order to stop this besides from using the stopping criterion we can also apply
pruning on the trained decision tree. In the pruning process we evaluate the
overall effect of leaf node on the loss function. This is done by removing
leaf nodes one by one so that we can see which ones are affecting the loss
significantly. This process of removing leaf nodes is continued until we are able
to minimize the loss function and we stop once no significant improvements
can be achieved.

3.2.2 Random Forests

When applying the bagging algorithm discussed earlier, if decision trees are
being used as the weak learners then it gives us the random forests.

Formally it is defined by Brieman [2] as, " Random forests for regression
are formed by growing trees depending on a random vector such that the tree
predictor h(x, Θ) takes on numerical values as opposed to class labels."

It can be simply understood as a collection of decision trees whose output
is averaged (for regression) and majority vote (for classification). A decision
tree is a an individual decision stump in a random forest. Random forest
algorithm is given below.

Algorithm 1: Random forest algorithm [6]

Input : N = Total number of trees, T is the original dataset, Ti is
the bootstrapped dataset, Node size nmin is the number of
dataset samples associated with the node

for i = 1 to N do..1. Draw a bootstrap dataset Ti from T, |Ti| = m;..2. Grow a tree hi
m using Ti by recursively repeating the following, until the

minimum node size nmin is reached:..a. Select k attributes at random from the p attributes..b. Sick the best attribute and split-point among the k..c. Split the node into two daughter nodes

end

Output : Ensemble of trees b(x) averaging hi (regression) or selecting
a majority vote (classification)

8



..................................... 3.2. Ensembling

The decision to choose this algorithm was based on the following reasons:..1. It is well-known to provide high performance and also suits well to
datasets of high dimensionality such as is the case with our dataset...2. It controls overfitting on the training data which is a big disadvantage of
using a single decision tree. In random forest, each decision tree is not
given the choice of full features but rather a smaller subset at random
and this in turn leads to difference in splitting attributes across the trees
and overall we end up reducing the overfitting on the training dataset...3. Random forests provide a computationally less expensive and faster way
of error assessment by the use of out-of-Bag (OOB) error as compared
to cross-validation (CV). The OOB is calcuated by[6]:

. Produce boostrapped datasets from the original dataset.. For each observation in the original dataset choose only those trees
from the random forest which were not trained on that particular
sample.. To evaluate the error compute the average of OOB trees...4. Random forest also provide two very useful metrics explained below

which allow easy evaluation of feature importance in a dataset:..a. Mean Decrease in Accuracy (MDA) or Permutation importance :
It is the overall decrease in accuracy of the random forest due to
removing a feature in the dataset. It can be calculated by using
OOB error for the random forest. And then repeatedly permuting
features and recording overall decrease in the accuracy...b. Mean Decrease in Impurity (MDI) or Gini Importance: It defined
as "the total decrease in node impurity (weighted by the probability
of reaching that node (which is approximated by the proportion of
samples reaching that node)) averaged over all trees of the ensemble".
[3]

3.2.3 Gradient boosting

Gradient boosting belong to a class of machine learning methods achieved
by following boosting ensembling approach described previously in Section 2.
The very basic idea here is to sequentially build weak classifiers which learn
from the mistakes of the previous classifiers by boosting their gradient and
reducing it for the incorrect classifiers. A weak classifier can be understood
as something slightly better than a random guess. Hence, newer classifier
learns from the mistakes of the previous classifier and this goes on until we
achieve the classifier we need. The algorithm for the method from [7], [10] is
given in Algorithm 2.

9



3. Machine Learning techniques..............................

Algorithm 2: Gradient boosting algorithm [7], [10]

Input : training set {(xi, yi)}
n
i=1,{(xi, yi)}

n
i=1, a differentiable loss

function L(y, F (x)),L(y, F (x)), number of iterations M.
Initialization Initialize model with a constant value:
F0(x) = argmin

γ

∑n
i=1 L(yi, γ) for m = 1 to M do..1. Compute so-called pseudo-residuals:

rim = −
[

∂L(yi,F (xi))
∂F (xi)

]

F (x)=Fm−1(x)
for i = 1, . . . , n.;..2. Fit a base learner (e.g. tree) hm(x) to pseudo-residuals, i.e. train it

using the training set {(xi, rim)}n
i=1.;..3. Compute multiplier γm by solving the following one-dimensional

optimization problem:

γm = argmin
γ

n
∑

i=1

L (yi, Fm−1(xi) + γhm(xi))..4. Update the model: Fm(x) = Fm−1(x) + γmhm(x);

end

Output : FM (x)

In this thesis the focus has been on using XGBoost which stands for extreme
gradient boosting and is described as "a scalable machine learning system for
tree boosting."[5] It is a fairly new gradient boosting library which as per its
name provides state of the art performance for boosting based ensembling
methods and has proven to give good results especially when used with
structured data. The library is a combination of superb advancements on
both computational as well as some algorithmic aspects of its predecessors.

The library provides parallelization and effective use of memory resources
during the training of models. A different pruning criterion of individual
decision tree splitting has been introduced which is based upon limiting
maximum depth of the trees instead of starting out with the traditional greedy
approach. On the algorithmic side there have improvements in regularization
of more complex models (both L1 & L2 regularization are now included)
thereby, controlling overfitting. It has in-built implementation to allow cross-
validation during the learning process and also enhanced sparsity awareness
due to better handling of missing values through estimation based on loss in
training. A weighted quantile sketch which helps in finding optimal splitting
points amongst weighted datasets has also been added.

The decision to choose this algorithm was based on the following reasons:..1. The speed of learning is much faster compared to other boosting methods
and is also further helped by the fact that it allows parallelisation. In a
task like ours training on such big datasets would take a considerable

10



.................................. 3.3. Evaluation Metrics

Figure 3.3: Residuals [18]

amount of time if classical implementations of gradient boosting trees
were used as the model is built sequentially...2. Based on its current reputation it is known to outperform other machine
learning algorithms and thus, it would be interesting to analyze whether
it would be the same case here...3. Improved regularization can be very useful for controlling overfitting in
our use-case.

3.3 Evaluation Metrics

In order to evaluate the performance of our models and to see their fit to
the data we need to use certain metrics. Three widely used metrics used for
regression analysis have been used here for evaluation [11].

Before we get to the metrics it is important to understand the concept
of residuals which is used in the calculation of all the following metrics. A
residual is defined as the difference between the predicted value and observed
value of a quantity. It can also be understood as shown In Figure 3.3 as the
distance between a data point and the line of fit of a model.

Residual = yi − y′

i

All three metrics used for evaluation of the models are based on residuals
and they follow the following convention where N is the total number of
samples, yi is the observed (true) value of a sample and y′

i is the predicted
value of sample by the model, K is the total number of predictors.

11



3. Machine Learning techniques..............................
. Root mean square error (RMSE)

Mean squared error (MSE) refers to the square of the mean of the
residuals.

MSE =
1

N

N
∑

i=1

(yi − y′

i)
2

Root Mean Square Error refers to the square root of the mean of the
residuals. It can simply be understood as the square root of the mean
squared error (MSE).

RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − y′

i)
2

The advantage of using RMSE over MSE is the ease in interpretibility
since, it is represented in the same units as of the target variable. The
value of RMSE can vary from 0 to ∞. Values close to zero indicate good
fit of model and vice-versa.

.Mean absolute error (MAE)

Mean Absolute Error refers to the absolute mean of difference of the
residuals.

MAE =
1

N

N
∑

i=1

|yi − y′

i|

Characteristic feature of MAE over RMSE is that it normalizes the
residuals, larger residuals would have bigger effect on the overall which
MAE neutralizes due to taking absolute value of the difference. MAE is
always non-negative and the smaller is the value the better is the fit of
the model.

. R-squared and adjusted R-squared

R-Squared metric is used for determining how well a particular regression
model fits the data. It can also be understood as how well the variation
in the target variable is explained by a model

R2 = 1 −
ExplainedV ariation

TotalV ariation

The value of R-Squared metric varies from 0 to 1. The closer the value
is to 1 the better fit is the model to the data.

Since, the R2-metric does not account for the number of predictors in
the model for therefore, we use the Adjusted R-squared metric. Which
enables comparison of models with different predictors.

12



.................................. 3.3. Evaluation Metrics

AdjustedR − Squared = 1 −
(1 − R2)(N − 1)

N − K − 1

The value of Adjusted R-Squared metric varies from 0 to 1. The closer
the value is to 1 the better fit is the model to the data.
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Chapter 4

Data pipeline

In this section we describe the semi-automated data pipeline created for data
collection, processing and further preparation for analysis and training of
machine learning models. A high level diagram is shown below and individual
components of the pipeline are explained in following subsections.

Figure 4.1: Data Pipeline

4.1 Data collection methodology

The data used in the thesis was collected from the websites of the two bus
service providers namely Student Agency and FlixBus. It was scraped for
buses departing during the period from 11th of October 2018 till 2nd of
January 2019 and 20th of March 2018 till 5 December 2019 for FlixBus
and Student Agency respectivly. It took us a long sequence of steps from
starting with inspecting the websites to figuring out which fields provide
potentially useful data so that specific scrapers could then be developed.
Separate scrapers using python programming language were developed for
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4. Data pipeline.....................................
each of the service provided as their websites differ from each other which can
also be observed in the Figure 4.2. These scrapers were then run at regular
periods to obtain raw data which is stored in varying formats and processed
further.

Figure 4.2: Websites of the service providers

The scripts scraped the data from the websites of the service providers,
storing each sample separately in individual files. The individual files each
represent a single scraped record which are further combined together using
scripts in Python.

4.2 Data Cleaning

Once we have the individual records combined as a single file, then the
next step is to clean them. The data at hand contains many issues such
as unparsable data formats, misaligned data fields, missing data in certain
columns along with many other unwanted things that have crept in during the
scraping and further combination of individual records. Before the data could
be analyzed, it is necessary to deal with above mentioned inconsistencies. For
performing the cleaning operations scripts were prepared in Python. Cleaning
results in loss of certain amount of data (approximately 2 - 5 per cent) as we
discarded data having missing values.

4.3 Feature engineering and transformation

Now that we have cleaned datasets available, the next step in the data pipeline
involves generation of certain new features from existing ones (which are then
ultimately removed) while some are transformed from one format to another.
The motivation behind this is described below:

. To reduce the number of features or dimensionality of the datasets: as
the number of features increase, the model could become more and more
complex and it also increases the chances of overfitting to the training
data.
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......................... 4.3. Feature engineering and transformation

.Quality of model: presence of redundant variables results in misleading
predictions and a low quality model. More the number of useful features
the better it is for the model to learn the underlying relations.

. Less computations: a reduction in number of features would also result
in faster computations and hence, would speed up the training of models.

The following new features were genereated and added to the datasets
based on the pre-existing features:..1. Day of travel - A categorical text based feature detailing the day of the

week the connection is operating. The feature which is present in both
the datasets was generated based on the date of departure feature which
is in form of time and date stamp. Getting days of travel is a very useful
feature as it could help us understand how the frequency of buses is
altered by the service providers...2. Distance - this feature was explicitly added using the route column in the
datasets. Based on the route we used Google maps API to find distance
travelled between two cities...3. Hours before departure - this feature was obtained by using two pre-
existing features in the datasets namely date of departure and scraping
date. It was obtained as the difference between scraping time and time of
departure. By generating this new feature we could remove scraping data
and departure data and it resulted in reducing the number of features
and the biggest advantage is that having number of hours is a numerical
and hence, easily machine readable while scraping and data are date
and time stamps which are treated as categorical variables by the ML
algorithms and it would complicate the model further and we would end
up one hot encoding them which would add nearly 20 columns more to
our training datasets.

Several variables were transformed from their initial formats to easily
machine readable formats in order to help the ML algorithms understand
them better and also for easier analysis...1. Columns departure time and arrival time of buses which are originally in

24 hours time format were transformed into decimal format by using a
simple created function in R. If this conversion was not done the model
would treat this data as categorical variables and one hot encoding would
result in adding up to 50 variables into the training datasets...2. Column transfer in the Flixbus dataset which was initially categorical
with two levels - transfer and without transfer was recoded into binary
format with 0 indicating without transfer and 1 indicating a connection
with transfer.
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Chapter 5

Dataset Description

In this section the datasets obtained after the passing through the data
pipeline are discussed. These are the final datasets on which we conduct
further analysis as well as our machine learning models will be trained. But
before we get to statistics below we have defined certain terms used in the
thesis from this section onwards:

. Sample: refers to a single scraping record of a bus. There can be multiple
samples for the same bus for the same route.

. Connection: refers to only a particular bus departing at a particular
date and time. A connection is up made of multiple samples.

. Route: refers to the source and destination cities of a bus. A route can
have multiple connections.

Dataset statistics Student Agency FlixBus

Total samples 3803458 1252067
Total connections 10 16
Missing cells (%) 0.0 % 0.0 %
Duplicate rows (%) 0.0 % 0.0 %
Number of variables 10 10
Numerical variables 7 6
Categorical variables 3 2
Boolean variables 0 1

Table 5.1: Overview of the datasets

The final cleaned datasets are having a total 3.8 million samples for Student
Agency and while for FlixBus we have 1.3 million samples. The reason why
the samples are much less for FlixBus dataset is because it was scraped much
less as compared to Student Agency. Furthermore the data that was scraped
had a large of number of duplicates (nearly 50 per cent) present in it which
was discovered only after running an early exploratory analysis and as a result
these samples were subsequently dropped. A more detailed overview can be
seen in Table 5.1 .
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5. Dataset Description..................................

Feature Name Description Type

col_depart departure time for a bus from the
source

Numerical

col_arrival arrival time for a bus to the destina-
tion

Numerical

col_space number of seats free for booking in
a bus

Numerical

col_price price of single ticket in the bus Numerical
(in CZK)

distance distance travelled by the bus in trav-
elling from source to destination

Numerical
(in kilome-
ters)

travel_time time taken by the bus to travel from
the source to destination

Numerical
(in hours)

transer whether the journey involves a trans-
fer

Boolean

hours_before_
departure

time period between scraping time
of data and the departure date and
time of the bus

Numerical
(in hours)

day_of_travel day of departure of the bus Categorical

services For student agency we have differ-
ent types of services being offered.
There are total 8 different types of
service categories which have been
numbered accordingly from 1 to 8

Categorical

Table 5.2: Features in the datasets

The final processed datasets are having a common format where they share
nearly the same of features. Majority of them are general features which can
be expected in any transport related dataset such as departure/arrival times,
number of passengers, distance to travel (covered by the departure point and
arrival point), price of a ticket, day of the week the travel is taking place and
available free space in the bus.

But there is one unique feature in the Student Agency dataset which is
termed as service type which sets it apart from only from the Flixbus dataset.
Service type is a categorical variable which is referring to eight different
categories of services offered by Student Agency on board its buses.
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Chapter 6

Analysis of Datasets

In this section the features described in the previous section are analyzed in
order to present a view of the current situation, derive insights and formulate
a better understanding of the data which is needed before we start to train
our machine learning models.

6.1 Feature distributions

We start off by analysing how the various features of interest are distributed
across different datasets. This is important from the point of view of further
analysis as it could possible help us detect some class imbalances happening
in the data. If we conduct analysis on unbalanced datasets then that could
give us skewed results and furthermore, it could also lead to serious errors
when training machine learning models.
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(b) : Reduced dataset

Figure 6.1: Distribution of price feature in the FlixBus dataset

The distribution of prices in the FlixBus dataset as observed in 6.1a is
quite evenly spread overall except for a large peak in the range 200 - 300 CZK.
But as we analyse the distribution for the free capacity we discover a huge
imbalance as shown in Figure 6.3a where it reveals the maximum observations
are in the range 35-40 in the data and other bins of the histogram are almost
invisible.

This imbalance is likely due to the dataset used for FlixBus. Since we
were collecting data for periods up to 3 months before the departure of buses
and it is likely the buses are not fully occupied that early so as a result we
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6. Analysis of Datasets..................................
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(b) : Reduced dataset

Figure 6.2: Distribution of price feature in the Student Agency dataset

have many observations where the free capacity is very high. Besides this
another major reason of having much more samples in this range is during
the scraping it was not possible to record a free capacity of more than 40. So
as a result in records where the free capacity was even more than 40, it was
still recorded as 40.

It is important to balance the distributions here otherwise our models for
example will just learn to predict the free capacity in the ranges of 35-40
and other classes will be totally ignored. For balancing out the dataset, we
randomly undersampled the rows of data where capacity is between 30-40.
The resulting distribution is represented in Figure 6.3b where we can now
observe prices in ranges outside 30-40. Interestingly, the overall distribution
of prices though still remains more or less unchanged as can be in seen in
Figure 6.1b.
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Figure 6.3: Distribution of free space feature in the Flixbus dataset

For the Student Agency dataset, as soon as we plot the price ranges
we discover a huge imbalance shown in Figure 6.2a where majority of the
observations in the dataset are in price range 0-500 CZK. The cause of this
imbalance in the Student Agency dataset stems from the disproportionate
presence of connections which is shown in figure 6.5a, where we can see the
number of samples in the dataset for each connection. On the first look,
one can observe the largest group of samples is from Liberec to Prague,
Prague to Berlin (both ways) and Prague to Dresden connections while other
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................................. 6.1. Feature distributions
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Figure 6.4: Distribution of free space feature in the Student Agency dataset

Be
rli

n_
Pr

ah
a

Br
us

se
ls_

Pl
ze

n

Lib
er

ec
_P

ra
ha

Lo
nd

yn
_B

ru
ss

el
s

Lu
ce

m
bu

rk
_B

ru
ss

el
s

Lu
ce

m
bu

rk
_L

on
dy

n

Lu
ce

m
bu

rk
_P

lze
n

Pr
ah

a_
Be

rli
n

Pr
ah

a_
Br

us
se

ls

Pr
ah

a_
Dr

es
de

n

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y 
in

 th
e 

da
ta

se
t

1e6

(a) : Original dataset

Lib
er

ec
_P

ra
ha

Be
rli

n_
Pr

ah
a

Br
us

se
ls_

Pl
ze

n

Lo
nd

yn
_B

ru
ss

el
s

Lu
ce

m
bu

rk
_B

ru
ss

el
s

Lu
ce

m
bu

rk
_L

on
dy

n

Lu
ce

m
bu

rk
_P

lze
n

Pr
ah

a_
Be

rli
n

Pr
ah

a_
Br

us
se

ls

Pr
ah

a_
Dr

es
de

n

0
2000
4000
6000
8000

10000
12000
14000

Fr
eq

ue
nc

y 
in

 th
e 

da
ta

se
t

(b) : Reduced dataset

Figure 6.5: Distribution of connection feature in the Student Agency dataset

connections are almost invisble in the figure. Liberec to Prague connection
is usually having the prices in the set range of 79, 89 and 99 CZK whereas,
the connections to Germany from Prague are usually priced from 250 -
500 CZK range. Hence, this is the reason why the biggest bins in our
price histograms are in that range. This disproportionate representation of
connections is possibly due to a combinations of two factors - firstly, the
number of connections on the routes mentioned before is very high and as
a result more samples were collected during scraping of data. Secondly, it
could be due to the fact certain connections and routes were scraped more
during the data collection process.

For balancing the connections we undersampled high frequency connections
reported earlier and new distributions can be observed in Figures 6.5b and
6.2b for price and connection frequency respectively. The price is now more
evenly distributed across the different ranges. This also helps to ensure
that models that will be trained on the reduced amount of data learn the
underlying relationships of target variables across different connections. If
certain connections overpower the dataset then it is highly likely the models
will overfit to those specific connections. The balancing of connections does
not seem to effect the distribution of free capacity feature in the dataset and it
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6. Analysis of Datasets..................................
remains more or less unchanged after the data is reduced. On a comparative
note to the FlixBus dataset, the original Student Agency dataset shown in
Figure 6.4a does not show a huge disparity in distribution of free capacity
feature. A possible reason why this may be happening is because the samples
for the this dataset were collected over a much longer period (approximately
one year) as compared to the FlixBux dataset (approximately three months).
Longer period of data collection meant more representation of various ranges
in the dataset.

6.2 Assessing relationships among the features
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Figure 6.6: Correlation matrices for the datasets
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Figure 6.7: Average price of versus all other numerical variables in the FlixBus
dataset

Having assessed the features distributions and corrected imbalances in
the datasets we can proceed with further analysis of how the features are
interacting with each other. Observing correlation matrices for the datasets
in Figure 6.6, we can see almost all features except distance and departure
time are weakly correlated to price for Student Agency dataset. While for
FlixBus dataset similar scenario is depicted by two features namely travel
time and transfer. A weak correlation could possibly indicate existence of
either a non-linear relationship or certain features are just redundant and
have very little effect on price overall. This is something we will discover later
through our predictive analysis.

A similar scenario can be observed for free capacity as well, where both
datasets show very similar correlation scores and the only feature which
seems to show a strong relationship with the free capacity is hours before
departure of the bus. This could again point towards the existence of non-
linear relationships among the features or could simply be a case of having
surplus features in the datasets.

Now that we have a slight hint of overall feature interactions through the
correlation matrices, for a more deeper understanding of feature relationships
we will use pairwise plots of average price and free capacity with respect to
all other numerical features in the datasets.

In Figure 6.7 we can observe how the average price of a ticket is being
affected by other features in the FlixBus dataset. As pointed out by the
correlation matrix earlier, the relationship of price seems to be strongly linear
with respect to travel time. As for the remaining three numerical features the
relationship of average price with respect to hours before departure shows a
slightly linear trend when the hours before departure is less than 250 hours
but beyond that point the relationship is much harder to interpret directly
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Figure 6.8: Average price versus all other numerical features in FlixBus dataset

from the plot and seems to be strongly non-linear. For the departure and
arrival times of the bus, the distribution of points seems to be quite evenly
spread and we can observe average price is slightly higher for bus departing
during midnight and early morning hours.

For the Student Agency dataset in Figure 6.8 except for distance traveled
on the journey all other features seem to be non-linearly related to average
price of the ticket. Although in comparison to the FlixBus dataset, we can
observe the fluctuation in average price is much less with respect to the
departure and arrival times of the bus.

The relationship of average free capacity with other features in the FlixBus
dataset can be observed as being quite non-linear. We can see in Figure 6.9,
the relationship with departure and arrival times is similar to average price.
But the interactions with hours before departure seem to be hyperbolic and
we can observe the average free capacity is dropping quite rapidly as the
hours before departure are decreasing. The situation is slightly different for
the average free capacity in Student Agency dataset as shown in Figure 6.10.
There is a slight hint of some linear relationship with departure times but
arrival times show a mostly a non-linear trend. Also the relationship with
hours before departure is existing over a much larger range and the hints of a
similar hyperbolic trend as seen in the FlixBus dataset can be noticed here
as well.
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Figure 6.9: Average free capacity versus all other numerical features in FlixBus
dataset
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Figure 6.10: Average free capacity versus all other numerical features in Student
Agency dataset
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Chapter 7

Training of models

This chapter covers the application of the machine learning techniques de-
scribed in Section 3.2 to the datasets. We will be training separate models
for predicting both price and the free capacity in a bus. The entire process of
training, tuning and testing of the machine learning models is described in
further subsections along with the respective evaluation metrics discussed in
Section 3.3 to evaluate their performance.

Before moving further we would present certain terminology along with
it’s meaning which is used in this section and also further beyond:

. Training set: Refers to a partition of the original dataset which is used
to train a model.

. Testing set: Refers to a partition of the orignal dataset which is unseen
by the model during its training phase. It is used to evaluate the
performance by assessing it’s ability to generalize over data it has not
seen during training.

.Model hyperparameters: Refers to those parameters of the model which
cannot be learned during its training and are required to be set at the
start of the training process.

. Validation set: Refers to a partition of the orginial dataset which is used
to tune the hyperparameters of a model. The validation set may or may
not be data the model has seen during training.

. Cross-validation: It is the technique of partitioning the original dataset
into different partitions and the model is trained on a partition of data
while the remaining is used as a testing set to evaluate the performance.
This approach of partitioning the datasets is more specifically called
k-fold cross validation where k refers to the number of partitions created
from a dataset. The dataset is divided into k-folds then the model is
trained on k-1 folds always leaving one partition out to be used as a
testing set, the whole process is repeated total k times. There are also
other cross-validation techniques but this is only one being used for our
experiments in the thesis.
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7. Training of models ..................................
.Grid search: Refers to the process of tuning of hyperparameters of a

model where we select different ranges of values to be tried out and then
combinations are made of all the values and search is performed to find
the best hyperparameters. Grid search also has different types but in
the scope of our work we have used a constrained version of a full grid
search where we take only a pair of hyperparameters and tune them at
a time. This contrained version was used in order to optimize the use of
computational resources.

.One-hot encoding: Refers to the technique of transforming categori-
cal variables in a dataset to a binary representation. It allows easier
understanding of categorical variables by machine learning models.

7.1 Baseline model: Linear regression

In order to understand how well our trained models are doing, it is important
to have a baseline to compare them against. The baseline model can be any
weak model which is slightly better than a random guess. Such a model can
be the average of the prediction variable or an ordinary least square (OLS)
regression also known as linear regression which is what we will use as the
baseline model. Evaluation metrics have been presented in the Tables 7.1
and 7.2 for the baseline linear regression models for price and free capacity
predicting models respectively for both Student Agency and FlixBus.

Price Model Free Capacity Model

Metrics Training Set Testing set Training Set Testing set

RMSE 169.68 169.91 17.89 17.92
MAE 94.83 94.97 15.14 15.11
Adjusted R-
Squared

0.60 0.60 0.03 0.03

Table 7.1: Linear regression results for Student Agency Dataset

Price Model Free Capacity Model

Metrics Training Set Testing set Training Set Testing set

RMSE 96.41 96.45 8.07 8.05
MAE 67.10 67.21 6.29 6.28
Adjusted R-
Squared

0.64 0.64 0.078 0.077

Table 7.2: Linear regression results for FlixBus Dataset

From the tables above we can already observe the linear regression model
is not performing too well. If we take a closer look at the evaluation metrics
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presented, RMSE of 169.68 for example can be understood as on an average
the output of the model is off from the true value by 169.68 CZK. It is a
significant error in the context of our scales of price (0-2000 CZK) but that
is expected since, this is just a baseline model.

The key feature in the tables here though is the adjusted r-squared metric
which is indicating a moderately high value of fit of the price linear regression
model to both Student Agency and FlixBus data. On the other hand, if we
observe the adjusted r-squared metric presented in Tables 7.1 and 7.2 above
we will notice the value is very low for free capacity linear regression models
for both the datasets. This can possibly indicate two things, one the there is
a requirement of a non-linear model here. The second thing it could indicate
also is if we refer back to definition of adjusted r-squared we are also taking
into account the number of features and a low adjusted r-squared indicates
there are too many redundant independent variables in the model.

7.2 Random Forest Models

As we have the baseline metrics set, we can start training our machine learning
models. We will start by training the random forest models for predicting
both the price and free capacity in a bus. For implementing the algorithms
and developing our models we have used the sklearn [15] package in Python.

Preparation of data

One of the key features of random forest algorithm also mentioned previously
is that it does not require extensive feature pre-processing to be applied on
the data before the model can be trained. Only transformations required to
be done were one-hot encoding of categorical variables in the datasets. After
that we split the entire dataset into training and testing set in the ratio of
75:25, for performing this split we use random sampling provided by sklearn
in Python.

Training of random forest models and hyperparameter tuning

Random forest much like many other machine learning algorithms is dependent
on hyperparameter tuning to give the best results. Building a random forest
model is usually an iterative process where we start out by building a baseline
random forest model which is then further tuned to give the best performance.
Although there are many hyperparamaters in the python implementation of
random forests in the sklearn package which can be tuned but below we have
mentioned some of the most important ones along with their short definitions,
which were used and tuned in our work:

.max_depth: refers to the maximum depth up to which a single tree is
allowed to grow.
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. n_estimators: refers to the number of trees to be used in the random

forest.

.min_samples_split: refers to the minimum number of samples which
must be present for a node to be split.

.max_samples: refers to fraction of the bootstrapped samples to be used
for training each tree in the random forest.

.max_features: refers to the number of features to be considered while
searching for the best split criterion for nodes in each tree in the random
forest.

Hyperparameter Tuning Grid Best value
(price
model)

Best value
(free capac-
ity model)

max_depth [3,5,7,9] 9 9
n_estimators [50,200, 500, 1000] 500 1000
min_samples_split [2,4,6,8,10] 2 4
max_samples [0.50,0.65,0.80] 0.80 0.80
max_features [’auto’,’sqrt’,’log2’] auto auto

Baseline RMSE 102.58 7.25
Best tuned RMSE 77.13 5.72

Table 7.3: Random forest hyperparamter grid tuning results for FlixBus dataset

Hyperparameter Tuning Grid Best value
(price
model)

Best value
(free capac-
ity model)

max_depth [3,5,7,9] 9 9
n_estimators [50,200, 500, 1000] 50 500
min_samples_split [2,4,6,8,10] 2 10
max_samples [0.50,0.65,0.80] 0.50 0.50
max_features [’auto’,’sqrt’,’log2’] auto auto

Baseline RMSE 101.31 15.50
Best tuned RMSE 73.65 13.21

Table 7.4: Random forest hyperparamter tuning grid results for Student Agency
dataset

Following the iterative process mentioned earlier we begin by training base
random forest models for both price and free capacity on both the datasets
separately. These base models are trained using default settings provided by
the sklearn package and there performance as expected is not quite good, the
exact figures can be observed in Tabls 7.3 and 7.4 respectively. We then apply
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constrained grid searching combined with 5-fold cross-validation to tune the
hyperparameters of our base models and this further results in significant
gains in metrics for all the base models. Through this tuning process we were
able to lower the RMSE of the price models by approximately 20 CZK and
for the free capacity models further by 2 seats.

Evaluation of final trained models

Once we have obtained the best tuned values for the hyperparameters, final
models are trained and their performance is evaluated using the testing set.
The metrics are presented in the Tables 7.5 and 7.6. A quick glance shows
there is not much disparity between training metrics and testing metrics
thereby, indicating the models are not overfitting.

Price Model Free Capacity Model
Metrics Training Set Testing set Training Set Testing set

RMSE 75.81 77.13 5.65 5.72
MAE 7.47 7.53 4.32 4.37
Adjusted R-
Squared

0.86 0.86 0.41 0.41

Table 7.5: Final random forest results for Flixbus Dataset

Price Model Free Capacity Model
Metrics Training Set Testing set Training Set Testing set

RMSE 73.65 76.05 13.0 13.21
MAE 29.82 30.23 9.25 9.38
Adjusted R-
Squared

0.95 0.95 0.32 0.30

Table 7.6: Final random forest results for Student Agency Dataset

7.3 XGBoost Model

Having finished training our random forest models, now we move on to
the second class of ensemble techniques based around boosting described in
section 3.2 and more specifically using the XGBoost library. For training and
tuning of our XGBoost models we have used the XGBoost python package
[5] along with it’s sklearn API version. The reason we used a combination
of these two packages is to use the easy-to-use and efficient grid searching
capabilities for hyperparameter tuning provided by the sklearn package.
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Preparation of data

The process of preparation of data for training for the XGBoost model is very
similar and almost identical to the one mentioned previously for the random
forest models. Except that XGBoost has a strict requirement to use only
numerical features which required one-hot encoding of categorical variables
in the datasets. This is further followed by transformation of the datasets in
python from dataframes to an internal data structure called as DMatrix used
by the XGBoost library.

Training of XGBoost models and hyperparameter tuning

Similarly to random forests, XGBoost is also heavily reliant on hyperparameter
tuning to give the best results. Hyperparameters were tuned using the
sklearn package’s grid search combined with 5-fold cross validation. A short
description of these hyperparameters as described by the documentation of
the packages is given below:

.max_depth: refers to the maximum depth up to which a single tree is
allowed to grow.

.min_child_weight: refers to the minimum sum of weight needed in a
child node.

. gamma: refers to the minimum reduction in loss which must occur in
order to partition a leaf node in the tree.

. subsample: refers to the subsample ratio of training data to be used.

. colsample_bytree: refers to the subsample ratio of training data to be
used when growing each tree in the ensemble.

. reg_alpha: refers to the L1 regularization on weights during training. A
very useful parameter to control overfitting.

We follow the same iterative process described earlier for random forests i.e.
building base models using default settings in the sklearn package and further
tuning the hyperparameters using grid search and 5-fold cross validation.
The applied grid search values along with the best values can observed in
Table 7.7 and 7.8 for the FlixBus and Student Agency datasets respectively.
The gain from hyperparameter tuning is quite significant here especially in
the case of price models where the RMSE was significantly lowered for the
FlixBus dataset from the base XGBoost model value of 143.40 to best tuned
value of 42.91. Similar results are obtained for the Student Agency dataset
as well, where we lowered the RMSE by approximately 30 CZK from base
model value of 86.86. This clearly shows the value of the hyperparameter
tuning process which although is quite time consuming and computational
resource intensive but reaps good results.
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Hyperparameter Tuning Grid Best value
(price
model)

Best value
(free capac-
ity model)

max_depth [3,5,7,9] 9 9
min_child_weight [1,3,5] 3 1
gamma [0.0, 0.1, 0.2, 0.3,

0.4]
0 0

subsample [0.6, 0.7, 0.8, 0.9] 0.8 0.9
colsample_bytree [0.6, 0.7, 0.8, 0.9] 0.9 0.9
reg_alpha [1e-5, 1e-2, 0.1, 1,

100,1000]
1 0.1

Baseline RMSE 143.40 5.40
Best tuned RMSE 42.91 4.11

Table 7.7: XGBoost hyperparamter grid tuning results for FlixBus dataset

Hyperparameter Tuning Grid Best value
(price model
)

Best value
(free capac-
ity model)

max_depth [3,5,7,9] 9 9
min_child_weight [1,3,5] 1 1
gamma [0.0, 0.1, 0.2, 0.3,

0.4]
0 0

subsample [0.6, 0.7, 0.8, 0.9] 0.9 0.9
colsample_bytree [0.6, 0.7, 0.8, 0.9] 0.9 0.6
reg_alpha [1e-5, 1e-2, 0.1, 1,

100,1000]
100 100

Baseline RMSE 86.86 13.23
Best tuned RMSE 59.22 11.18

Table 7.8: XGBoost hyperparamter grid tuning results for Student Agency
dataset

Evaluation of final trained models

Having determined the best value of hyperparameters now we can proceed
with the training of final models. XGBoost library is used to perform the
training process for one thousand rounds with 10-fold cross-validation to
achieve more robust models combined together with early stopping and
lowered learning rate. Training results can be be observed in Figure 7.1 for
the FlixBus models and we can observe training and validation curves are
following each other very closely. This demonstrates we are not overfitting
and also we can understand why smaller values of regularization alpha (1 and
0.1) are given in Table 7.7.

While on the other hand, the plots given in Figure 7.2 are slightly different
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Figure 7.1: Final model training errors for FlixBus dataset

for the Student Agency models. Here the curves for training and validation
errors are starting to diverge from each other after six hundred and two
hundred rounds for the price and free capacity models respectively. This
departure of curves from each other is usually an indication that the model
is now beginning to overfit the data and hence, this explains why we can see
much higher values (100 for both models) of regularization alpha in Table 7.8.
The alpha or the L1 regularization helps in controlling overfitting by highly
penalizing more complex models.

After completing the training process, the testing set is used to evaluate
the models’ ability to generalize. As we do not see much difference between
the training and testing errors in tables 7.9 and 7.10 for both FlixBus and
Student Agency models, it indicates the models have learned well.
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Price Model Free Capacity Model
Metrics Training Set Testing set Training Set Testing set

RMSE 40.13 42.91 3.96 4.11
MAE 28.88 30.47 2.97 3.09
Adjusted R-
Squared

0.93 0.92 0.67 0.65

Table 7.9: Final XGBoost results for the Flixbus dataset
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Figure 7.2: Final model training errors for Student Agency dataset
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Price Model Free Capacity Model
Metrics Training Set Testing set Training Set Testing set

RMSE 49.84 59.22 10.36 11.18
MAE 21.71 24.19 6.89 7.44
Adjusted R-
Squared

0.97 0.94 0.53 0.46

Table 7.10: Final XGBoost results for the Student Agency dataset
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Chapter 8

Evaluation and Interpretation of Results

In this section we will evaluate the fit of the various models to the datasets
in order to determine which models are performing well and which ones are
not. Once we have determined our best models, we will further interpret
their output and along with the relationship depicted by the output variables
with their respective inputs. This would further enable us to understand the
major features influencing the price and free capacity in the datasets.

8.1 Comparing the methods based on evaluation

metrics

Price Model Free Capacity Model
Model RMSE Adjusted R-

Squared
RMSE Adjusted R-

Squared

Linear
regression

169.91 0.60 8.05 0.07

Random for-
est

77.13 0.86 5.72 0.41

XGBoost 42.91 0.92 4.11 0.65

Table 8.1: Evaluation metrics for FlixBus models

For our price models we can observe significant improvements for both
FlixBus and Student Agency in Tables 8.1 and 8.2 respectively. XGBoost
has quite clearly outperformed both the baseline as well as the random forest
models by having an RMSE of 42.91 and 59.22. Which can be interpreted as
on average the output of the model is off from the true value by 42.91 CZK.
A high value of adjusted r-squared also shows that the model is fitting to the
data quite well. This is not very surprising as with the baseline model we
already had a good value of fit 0.60 so having a non-linear model this was
expected to increase.

For the free capacity models also XGBoost has once again outperformed
its competitors by producing the lowest RMSE for 11.18 and 4.11 reported in
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Tables 8.1 and 8.2 respectively. Also there is a quite significant improvement
in the fit of the model to the data as indicated by values of 0.65 and 0.46
from base values 0.07 and 0.03 respectively. This further reinforces our
observations in Section 6.2 that the relationship is strongly non-linear in case
of free capacity in the datasets. It also indicates that are not enough features
in the dataset to accurately predict the free capacity.

Price Model Free capac-
ity Model

Model RMSE Adjusted R-
Squared

RMSE Adjusted R-
Squared

Linear
regression

96.45 0.64 17.89 0.03

Random for-
est

76.05 0.95 13.21 0.30

XGBoost 59.22 0.94 11.18 0.46

Table 8.2: Evaluation metrics for Student Agency models

8.2 Interpretation of the trained Models

Interpreting the outputs of machine learning methods such as random forest
and XGBoost is an active area of research in the machine learning community.
Over the years some reliable approaches have become best practices in the
industry which are applied in the sections to come to interpret the output of
the models trained earlier.

Global interpretations

In this section we will evaluate our models on a global level i.e. for the entire
datasets. The key technique for this for ensemble models is through evaluation
of feature importances. Feature importance is a key feature which comes as
an out-of box component of most of the conventional libraries based around
ensembling techniques. It evaluates the importance of each independent
variable in the dataset with regards to the dependent variable. The concept
here is based on the concept of mean decrease in impurity (MDI) defined
earlier in Section 3.2. Uses of feature importance:

. Feature selection: Using feature importance we can evaluate which are
the most important in making better predictions and also the ones
which are least important. This can further help us to remove these less
important features thereby, making our model simpler.

. Provides a basis of cross comparison: feature importance is computed
by both the random forest and XGBoost methods thereby, providing a
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Figure 8.1: Feature importance with random variable using MDI

common comparison ground. It allows us to how see different models
may attribute similar or different importance to the various variables in
the dataset.

While evaluation of feature importance using MDI is widely used and
a somewhat trusted method, in recent years questions have been raised
regarding the robustness of using such a concept [17]. It has been shown
that MDI is seemingly biased towards numerical features in the dataset and
can inflate their importance. The reason this happens is because MDI is
measured on the training set and given enough time during the training, the
model can easily overfit on features (even on non-important ones).

To serve as a sanity check, a small experiment was conducted in which
a randomly generated numerical column was added to the dataset. This
randomly generated column is totally unrelated to the target variable so we
would expect it to receive a relatively low or close to zero importance score.

But what actually happens as can be observed in Figure 8.1 the ran-
dom_num variable (red bin) added becomes the third most important vari-
able clearly showing the misleading nature of MDI. To further confirm this
we present the evaluation metrics in Table 8.3 where the disparity between
training and testing metrics is quite clear and indicates the model has overfit-
ted to the training data and hence, performing relatively poor on the test
data. Thereby, also showing the pitfalls of use of MDI in calculating feature
importance.

The alternative to MDI is the use of mean decrease in accuracy (MDA) or
permutation importance defined earlier in Section 3.2 for computing feature
importance. MDA driven evaluation is much more robust and to show its
reliability the same experiment as with MDI was also repeated and the
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Metrics Training Set Testing set

RMSE 4.44 9.88
R-Squared 0.96 0.83

Table 8.3: Evaluation results of random forest trained with a random variable

resulting feature importance can be observed in Figure 8.2. Here we can
see the added random variable is having the lowest score (equal to zero) as
should be expected, demonstrating the reliability of MDA and we can now
further work with the results.

We used MDA to determine the three most important features for our price
and free capacity models for both Student Agency and FlixBus datasets which
are reported in Table 8.4. Feature hours before departure is a recurring theme
throughout table, coming out as the most important feature for three out of
the four models. Price models are having free capacity as one of the top most
important features while the reverse is happening for free capacity models
where the price is one of the most important features. This is something which
we would expect as two features are closely related although the relationship
is quite non-linear as demonstrated by our analysis in section ref.

FlixBus Price
Model

FlixBus Free
Capacity
Model

Student
Agency Price
Model

Student
Agency Free
Capacity
Model

travel time hours before
departure

hours before
departure

hours before
departure

free capacity price free capacity price
day of travel travel time departure time departure time

Table 8.4: Top three most important features for the various models

Local Interpretation

As demonstrated in the previous section evaluating feature importance is
quite useful and insightful interpretation technique which gives us an overall
outlook of the model. But we are also interested in understanding the model’s
working on a granular level such as for one particular observation. This can
be defined as the local interpretation of the model. Local interpretations
help us to understand the decision trajectory followed by the model to take a
decision on a particular observation.

To make these local interpretations we will be using a framework called
as Shapley Additive Explanations (SHAP) [13] which applies a game theory
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Figure 8.2: Feature importance with random variable using permutation impor-
tance

approach towards the interpretation of machine learning models. The core
idea behind SHAP is to treat the model prediction as the outcome of a game
where players are the features in the dataset cooperating together to bring
about a particular prediction. Then each feature receives the payout or simply
the contribution towards making a single prediction. We are using the Python
package of SHAP to make local interpretations of our best models.

In figure 8.3 we can observe the SHAP explanation of a prediction made by
FlixBus price model, where the model has predicted price of a ticket as 544.93
CZK based on the input it received while the true value is 549 CZK. We can
observe in summary plot how the different features are pulling and pushing
the model’s output away from the base value. Base value can be understood
as the average predicted output of the model. We can see the relative effect
of each feature (brackets denote feature’s input value) in bringing about the
prediction in the detailed overview. While travel time, route and free capacity
features are trying to drive the model’s output towards a higher value there
efforts are countered by the features arrival time and day of travel. It is also
quite interesting to see how the value of each feature is affecting the whole
prediction, the fact that the model is seeing that the day of travel is Thursday
that helps it lower to the predicted output.

Another explanation is given in figure 8.4 where we are using the FlixBus
free capacity model. The model has predicted the value to be 31.28 free seats
in the bus which is quite close to the true value of 32. In The summary
plot we can observe the major features that were instrumental in pushing
the model’s prediction for this observation from the base value of 27.94 to
31.28. While seeing that the hours before departure are still high, the route
is Dresden to Berlin and the departure time is 16:00 caused the predicted
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(a) Summary

(b) Detailed overview

Figure 8.3: SHAP explanation of a prediction by the FlixBus XGBoost price
model

output to be pushed further from the base value. On the other hand this
was controlled by the price of the ticket and travel time and other features
ultimately helping the model to settle down at the value it predicted.

These were few examples of how we can understand the working of our
models on a local level. In the last section we discovered the most important
features overall for each model and now with local interpretations we saw
how different features and there different values contribute towards making a
prediction. It was also interesting to see how certain features which might not
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(a) Summary

(b) Detailed overview

Figure 8.4: SHAP explanation of a prediction by the FlixBus XGBoost free
capacity model

seem significant on a global level, can be observed being very instrumental for
local predictions. This was was the case where we saw a huge effect from the
route feature in figure 8.4 towards making that particular prediction whereas,
the feature overall though is much lower in global feature importance ranking
for the model.

Analysing the Partial Dependence and observed pricing policy

Final interpretation technique we will use is partial dependence plots. Partial
dependence plots (PDP) allow us to investigate the relationship between

45



8. Evaluation and Interpretation of Results .........................

(a) Relationship of free capacity with price

(b) Relationship of free capacity with hours before departure

Figure 8.5: Partial dependence plots with the two most important features for
the Student Agency free capacity model

the target variable and the features by isolating one feature at a time and
evaluating it. This is similar to what we did earlier in Section 6.2 but here
the key difference is the output is not from the true values but rather from
the predicted value of best XGBoost models. Partial dependence plots can
help us to understand the relationship much better as compared to what is
observed in Section 6.2.

Figure 8.5 shows the partial dependence plots generated for the two most
important features (as per evaluation in the previous sections) in the Student
dataset i.e. price of the ticket and hours before departure of the bus. The plot
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was obtained by fixing the value of the independent feature and calculating
the target variable based on that. In other words the price of the ticket was
fixed to for example 500 and then all the rows in the datasets were taken
where the price equals 500 and the free capacity of the bus was calculated
which is represented by the multiple blue lines. This process is repeatedly
carried out until we evaluate all available values of price in the dataset and
the in the end average trend is represented by the dark black line surrounded
by a slightly thick yellow boundary.

Interestingly we can see there is some linear behaviour shown in the
relationship of price with free capacity in the range of price up to 150. This
could be largely due to the routes such as Prague - Liberec where price
typically has only 3 levels (79, 89 and 99) and the effect on price is quite
small when related to the capacity of the bus. But as we look further we
can easily observe the price rising with decreasing free space in the bus so
everything seems to be in order here.

Similarly to price, a partial dependence plot was also obtained for hours
before departure by fixing its value to the various features in the dataset. On
analysing the average curve we can observe the relational is almost hyperbolic
showing that the fluctuations in the capacity of the bus do not start to occur
until 2000 hours (approximately 3 months) before the departure of the bus.
This again goes in line with known consumer behaviour of not indulging
in booking tickets especially for buses as they have relaxed cancellation
policies and also quite possibly because the bus travel can be planned quite
instantaneously.

For FlixBus price model we discovered the top two features were travel
time and hours free capacity of the bus in Table 8.4. The relationship of
price is shown in the PDP plot in Figure 8.7. We can see a very similar
hyperbolic relationship of the average predicted price with free capacity as we
saw previously with the Student Agency price model. Here again the price is
rising as the bus is filling up showing the tendency of bus service providers to
increase ticket prices when the bus is more occupied.

Student agency is using dynamic pricing which seems to be heavily reliant
on hours before departure of its buses and free capacity in the bus along with
the departure times of their buses and we can observed how these relationship
look like in Figure 8.6 and how they affect the pricing overall. For FlixBus
we discovered the scenario slightly different where we observed through our
interpretations the most important features in determining the price are the
time taken to complete the journey and the free capacity in the bus. A strong
linear dependence on travel time combined with available free capacity seems
to be the biggest contributors towards FlixBus’s dynamic pricing policy.

Having discovered the most important features globally along with some
local interpretations and PDP plots, this now brings us to end of the journey
we started off by exploratory analysis of features affecting the pricing of tickets
in Section 6.2. There we received just an early gist of what is happening and
how relationships might look like. Our interpretations of the best trained
models have further allowed us to validate our beliefs (existence of highly non-
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(a) Relationship of price with free capacity in the bus

(b) Relationship of price with hours before departure of the bus

Figure 8.6: Partial dependence plots with the two most important features for
the Student Agency price model

linear relationships and as well redundant variables) as well new discoveries
were made such as finding the most important features in the datasets along
with more clearly emphasize relationships amongst the features were observed.
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(a) Relationship of price with free capacity in the bus

(b) Relationship of price with time taken to complete the journey by bus (in hours)

Figure 8.7: Partial dependence plots with the two most important features for
the FlixBus price model
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Chapter 9

Conclusion

In the due course of our work we showed how Student Agency and Flixbus
are dynamically pricing their connections based on strong influences from
features such as free capacity, hours before departure of the bus and travel
time.

We found out the underlying relationships between the features in the
datasets to be highly non-linear through early exploratory analysis. As
we used non-linear machine learning techniques such as random forest and
XGBoost it allowed us to fit better to the data. Ultimately our XGBoost
model outperformed other methods based on the evaluation metrics reported
in Tables 8.1 and 8.2. It was able to learn well the underlying relationships
of price and free capacity with the features in the datasets. It was then used
further for making predictions and understanding relationships with features
in the model. Based on the results of the work done we can say that we
have achieved the objectives set at the beginning of this thesis to explore the
pricing strategies being used and to train our machine learning models which
can learn them well and use them further for predictive analysis.

The work done in the thesis can be further expanded by a more deeper
analysis based on different bus connections. Using multiple smaller models
which are predicting only for particular routes rather than one larger global
model. This could further reveal pricing models being used on a local level by
the bus service providers. Another avenue of expansion is through analysis
and training of models on more recent data which could reveal whether the
pricing model has remained same or it is evolving with time.
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